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PREFACE 
Providing the theory of digital communication systems, this textbook prepares senior undergraduate 
and graduate students for the engineering practices required in the real word. 

With this textbook, students can understand how digital communication systems operate in practice, 
learn how to design subsystems, and evaluate end-to-end performance. 

The book contains many examples to help students achieve an understanding of the subject. The 
problems are at the end of the each chapter follow closely the order of the sections. 

The entire book is suitable for one semester course in digital communication. 

All materials for teaching texts were drawn from sources listed in References. 
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5 DIGITAL MODULATION SCHEMES 
The digital data are usually in the form of a stream of binary data, i.e., a sequence of 0s and 1s. 
Regardless of whether these data are inherently digital (for instance, the output of a computer terminal 
generating ASCII code) or the result of analog-to-digital conversion of an analog source (for instance, 
digital audio and video), the goal is to reliably transmit these data to the destination by using the given 
communication channel.  

Depending on the nature of the communication channel, data can suffer from one or more of certain 
channel impairments including noise, attenuation, distortion, fading, and interference. To transmit the 
binary stream over the communication channel, we need to generate a signal that represents the binary 
data stream and matches the characteristics of the channel. This signal should represent the binary 
data, meaning that we should be able to retrieve the binary stream from the signal; and it should match 
the characteristics of the channel, meaning that its bandwidth should match the bandwidth of the 
channel, and it should be able to resist the impairments caused by the channel. Since different channels 
cause different types of impairments, signals designed for these channels can be drastically different. 
The process of mapping a digital sequence to signals for transmission over a communication channel 
is called digital modulation or digital signaling.  

In the process of modulation, usually the transmitted signals are bandpass signals suitable for 
transmission in the bandwidth provided by the communication channel. In this chapter we study the 
most commonly used modulation schemes and their properties.  

5.1 SIGNAL SPACE REPRESENTATION 
In the transmission of digital information over a communication channel, the modulator is the 
interface device that maps the digital information into analog waveforms that match the characteristics 
of the channel. The mapping is generally performed by taking blocks of 	 log  binary digits at a 

time from the information sequence 	and selecting one of 2  deterministic, finite energy 
waveforms , 1, 2, … ,  for transmission over the channel. 

• Modulator with memory – when the mapping from the digital sequence 	to waveforms 
is performed under constraint that a waveform transmitted in any time interval depends on 
one or more previously transmitted waveforms.  

• Memoryless modulator – when the mapping from the sequence  to the waveforms 
 is performed without any constraints on previously transmitted waveforms. 

• Linear modulator – principle of superposition 
• Non-linear modulator - principle of superposition does not exist 

5.2 MEMORYLESS MODULATION METHODS 
The waveforms  used to transmit information over the communication channel can be, in 
general, of any form. However, usually these waveforms are bandpass signals which may differ in 
amplitude or phase or frequency, or some combination of two or more signal parameters. We consider 
following signals:  

• Digital Pulse Amplitude Modulated (PAM) signals (ASK) 
• Phase-modulated signal (PSK) 
• Quadrature Amplitude Modulation (QAM) 
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5.2.1 Pulse-amplitude-modulated (PAM) signals (ASK) 

In digital PAM, the signal waveforms may be represented as  

cos 2 	; 		 1, 2, … ,   (5.1) 

where , 1 	denote the set of M possible amplitudes corresponding to 2   possible 
k-bit block of symbols. 

The signal amplitudes take the discrete values (levels) 

2 1 , 1, 2, … ,      (5.2) 

where 2 	is the distance between adjacent signal amplitudes. The waveform  is a real-valued 
signal pulse whose shape influences the spectrum of the transmitted signal. The symbol rate for the 
PAM is / . This is the rate at which changes occur in the amplitude of the carrier to reflect the 
transmission of new information. The time interval 1/  is called the bit interval and the time 
interval /  is called the symbol interval. 

 

Figure 5.1 Signal space diagram for digital PAM signals 

The M PAM signals have energies 

  (5.3) 

where  denotes the energy in the pulse . 

These signals are one-dimensional (N=1) and are represented by the general form 

       (5.4) 

where  is defined as the unit-energy signal waveform given as 

cos 2       (5.5) 

And 

a) M=2

b) M=4

c) M=8

0 1

00 01 11 10

000 001 011 010 110 111 101 100

ADMIN
Ceruzka

ADMIN
Čiara



Chapter V Digital Modulation Schemes    

84 
 

; 1, 2, … ,       (5.6) 

The corresponding signal space diagram for M=2, M=4, and M=8 are shown in Figure 5.1. Digital 
PAM is also called amplitude-shift keying (ASK). Gray encoding mapping of the bits. 

Euclidean distance between any pair of signal points is 

| | 2 | |  (5.7) 

and the minimum Euclidean distance is 

2         (5.8) 

The carrier-modulated PAM signal represented by Equation 5.1 is a double-sideband (DSB) signal 
and requires twice the channel bandwidth of the equivalent low-pass signal for transmission. 

The digital PAM signal is also appropriate for transmission over a channel that does not require carrier 
modulation. In this case the signal is called baseband signal represented as 

; 1, 2, … ,      (5.9) 

If M=2 than such signals are called antipodal signal with property 

        (5.10) 

And crosscorrelation coefficient of -1. 

 

Figure 5.2 Baseband and band-pass PAM signals 
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5.2.2 Phase-modulated signal (PSK) 

In digital phase modulation, the M signal waveforms are represented as 

       

cos 2 1        

cos 1 2 sin 1 	2 , 1, 2, … ,  (5.11) 

where  is the signal pulse shape and Θ , 1, 2, … ,  are the M possible phases of 

the carrier. 

These signal waveforms have equal energy 

     (5.12) 

Furtheremore, the signal waveforms may be represented as linear combination of two orthonormal 
signal waveforms  and  

      (5.13) 

where 

cos 2       (5.14) 

sin 2       (5.15) 

and the two-dimensional vectors  are given by 

cos 2 ;	 sin 2 	     (5.16) 

If M=2 

; 0          

; 0         

Signal space diagrams for M=2, 4, 8 are shown in Figure 5.3. We note that M=2 corresponds to one-
dimensional signals, which are identical to binary PAM signals. 
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Figure 5.3 Signal space diagram for PSK signals 

The Euclidean distance (ED) between any pair of signal points 

‖ ‖ 1 cos     (5.17) 

The minimum ED corresponds to the case in which | | 1, i.e., adjacent signal phases. In this 
case, 

1 cos       (5.18) 

A variant of 4-phase PSK (QPSK), called QPSK is obtained by introducing an additional  phase 

shift in the carrier phase in each symbol interval. This phase shift facilitates symbol synchronization. 

 

5.2.3  Quadrature Amplitude Modulation (QAM) 

The bandwidth efficiency of PAM/SSB can also be obtained by simultaneously impressing two 
separate k-bit symbols from the information sequence 	 on two quadrature carriers  and . 
The resulting modulation technique is called QAM, and the corresponding signal waveforms is 
expressed as 

       

cos 2 sin 2 , 1, 2, … ,   (5.19) 

where  and  are the information-bearing signal amplitudes of the quadrature carriers and  
is the signal pulse. 

Alternatively, the QAM signal waveforms may be expressed as 

       

cos 2 Θ       (5.20) 

Where   and Θ tan / . 

QAM signal waveforms may be viewed as combined amplitude and phase modulation. 

As in the case of PSK signals, the QAM signal waveforms may be represented as a linear combination 
of two orthonormal signal waveforms 
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         (5.21) 

 

Figure 5.4 Examples of combined PAM-PSK signal space diagrams 

where 

cos 2       (5.22) 

sin 2       (5.23) 

and  

;      (5.24) 

Euclidean distance between any pair of signal points is 

‖ ‖   (5.25) 

In the special case where the signal amplitudes take the set of discrete values 2 1 ,
1, 2, … ,  , the signal diagram is rectangular, as shown in Figure 5.5. In this case, the ED between 
adjacent points, i.e, the minimum distance is  

2         (5.26) 

which is the same result as for PAM. 
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Figure 5.5 Several signal space diagram for rectangular QAM 

5.3 MULTIDIMENSIONAL SIGNALS 
It is apparent from the discussion above that the digital modulation of the carrier amplitude and phase 
allows us to construct signal waveforms that correspond to two-dimensional vectors and signal space 
diagrams. If we wish to construct signal waveforms corresponding to higher-dimensional vectors, we 
may use either the time domain or the frequency domain or both in order to increase the number f 
dimensions 

Suppose we have N-dimensional signal vectors. For any N, we may subdivide a time interval of length 

	into N subintervals of length . In each subinterval of length T, we may use binary 

PAM (a one-dimensional signal) to transmit an element of the N-dimensional signal vector. Thus, the 
N time slots are used to transmit the N-dimensional signal vector. If N is even, a time slot of length T 
may be used to simultaneously transmit two components of the N-dimensional vetor by modulating 
the amplitude of quadrature carriers independently by the corresponding components. In this manner, 

the N-dimensional signal vector is transmitted in  seconds 	 	 	 . 

Alternatively, a frequency band of width Δ  may be subdivided into N frequency slots each of width 
Δ . An N-dimensional signal vector can be transmitted over the channel by simultaneously 
modulating the amplitude of N carriers, one in each of the N frequency slots. Care must be taken to 
provide sufficient frequency separation Δ  between successive carriers so that there is no cross-talk 
interference among signals on the N carriers. If quadrature carriers are used in each frequency slot, the 

N-dimensional vector (even N) may be transmitted in  frequency slots, thus reducing the channel 

bandwidth utilization by a factor of 2. 

More generally, we may used both the time and frequency domains jointly to transmit an N-
dimensional signal vector. For example, Figure 5.6 illustrates a subdivision of the time and frequency 
axes into 12 slots. Thus, an N=12 – dimensional signal vector may be transmitted by PAM or an N=24 
– dimensional signal vector may be transmitted by use of two quadrature carriers (QAM) in each slot. 

 

Figure 5.6 Subdivision of time and frequency axes into distinct slots 

5.3.1 Orthogonal multidimensional signals  

Frequency-shift keying (FSK) 

As a special case of the construction of multidimensional signals, let us consider the construction of M 
equal-energy orthogonal signal waveforms that differ in frequency and are represented as 

        

0 T 2T 3T

f0+Δf

f0

f0+2Δf

f0+3Δf

f0+4Δf

f
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cos 2 2 Δ 	      (5.27) 

Where the equivalent low-pass signal waveforms are defined as 

        (5.28) 

This type of frequency modulation is called frequency-shift keying (FSK). 

These waveforms are characterized as having equal energy and cross-correlation coefficients 

  (5.29) 

The real part of  is 

≡ cos Δ      

       (5.30) 

First, we observe that 0  when Δ 	and . Since | | 1  corresponds to 

adjacent frequency slots, Δ  represents the minimum frequency separation between adjacent 

signals for orthogonality of the M signals.  

 

Figure 5.7 Cross-correlation coefficient as a function of frequency separation for FSK signals 

 

Note that | | 0	for multiples of 1/  whereas 0 for multiples of . 

For the case in which Δ  ,  the M FSK signals are equivalent to the N-dimensional vectors 
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	0		0		0		0…√           (5.31) 

where .	The distance between pairs of signals is 

√2 , 	 	 ,       (5.32) 

which is also the minimum distance. 

 

Figure 5.8 Orthogonal signals for M=N=2 and M=N=3 

Biorthogonal signals 

A set of M biorthogonal signals can be constructed from 1/2  orthogonal signals by simply 
including the negatives of the orthogonal signals. Thus, we require 	 	 1/2  dimensions for the 
construction of a set of M biorthogonal signals. 

 

Figure 5.9 Signal space diagram for M = 4 and M = 6 biorthogonal signals 

We note, that the correlation between any pair of waveforms is either 	 1	 	0 . The 

corresponding distances are 2√ 	or 	 √2  , with the latter being the minimum distance. 

Simplex signals 

Suppose we have a set of M orthogonal waveforms   or, equivalently, their vector 
representation	 . Their mean is 

 

∑        (5.33) 

 

Now, let us construct another set of M signals by substracting the mean from each of the M orthogonal 
signals. Thus 

E
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̀        (5.34) 

The effect of the subtraction is to translate the origin of the m orthogonal signals to the point . 

The resulting signal waveforms are called simplex signals and have the following properties. First, the 
energy per waveform is 

‖ ‖ ‖ ‖         

1      (5.35) 

Second, the cross correlation of any pair of signals is 

́ . ́

‖ ́ ‖‖ ‖
, 	 	 ,    (5.36) 

Hence, the set of simplex waveforms is equally correlated and requires less energy, by the factor 
1 1/ , than the set of orthogonal waveforms. Since only the origin was translated, the distance 
between any pair of signal points is maintained at √2 , which is the same as the distance between 
any pair of orthogonal signals. 

 

Figure 5.10 Signal space diagrams for M-ary simplex signals 

Signal waveforms from binary codes 

A set of M signaling waveforms can be generated from a set of M binary code words of the form 

, , … , , m=1, 2, …, M      (5.37) 

where 0	 	1 for all  and . Each component of a code word is mapped into an elementary 
binary PSK waveform as follows: 

2E
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1 ⇒ cos 2 ; 	0     (5.38) 

0 ⇒ cos 2 	; 	0    (5.39) 

where  and . Thus, the M code words  are mapped into a set of M waveforms 

.	 The waveforms can be represented in vector form as  

, , … , , m=1, 2, …, M      (5.40) 

where   for all m and j. N is called the block length of the code, and it is also the 

dimension of the M waveforms. 

We note that there are 2 	possible waveforms that can be constructed from the 2  possible binary 
code words. We may select a subset of 2  signal waveforms for transmission of information. We 
also observe that 2  possible signal points correspond to the vertices of an N – dimensional hypercube 
with its center at the origin. Figure 5.11 illustrates the signal points in N=2 and 3 dimensions. 

Each of the  waveforms has energy . The cross correlation between any pair of waveforms depends 
on how we select the  waveforms from the 2  possible waveforms. Clearly, any adjacent signal 
points have a cross-correlation coefficient 

       (5.41) 

and a corresponding distance of 

2 1       (5.42) 

This concludes our discussion of memoryless modulation signals. 

 

Figure 5.11 Signal space diagrams for signals generated from binary codes 

5.3.2 Linear Modulation with Memory 

In this section, we present some modulation signals in which there is dependence between the signals 
transmitted in successive symbol intervals. This signal dependence is usually introduced for the 
purpose of shaping the spectrum of the transmitted signal so that it matches the spectral characteristics 
of the channel. 
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We shall present examples of modulation signals with memory and characterize their memory in terms 
of Markov chains. We shall confine our treatment to baseband signals. The generalization to band-pass 
signals is relatively straightforward. 

 

Figure 5.12 Examples of baseband signals 

NRZ modulation is memoryless and is equivalent to a binary PAM or a binary PSK signal in a carrier-
modulated system. 

The NRZI signal is different from NRZ signal in that transitions from one amplitude level to another 
occur only when a 1 is transmitted. The amplitude level remains unchanged when zero is transmitted. 
NRZI is called differential encoding. The encoding operation is described mathematically by the 
relation 

⨁        (5.43) 

where  is the input into the encoder and  is the output of the encoder. When 1 , the 
transmitted waveform is a rectangular pulse of amplitude , when 0, the transmitted waveform is 

a rectangular pulse of amplitude – . Hence, the output of the decoder is mapped into one of two 
waveforms in exactly the same manner as for NRZ signal. 

The differential encoding operation introduces memory in the signal. The combination of the encoder 
and the modulator operations may be represented by a state diagram (a Markov chain) as shown in 
Figure 5.13. 

 

Figure 5.13 State diagram for the NRZI signal  

The state diagram may be described by two transition matrices corresponding to the two possible input 
bits 0,1 . We note that when 0, the encoder stays in the same state. Hence, the state transition 
matrix for a zero is simply 

1 0
0 1

      (5.44) 

where 1,		  if  results in a transition from state i to state , 1,2  and 1,2; otherwise, 

0. Similarly, the state transition matrix for 1 is 

NRZ

NRZI

Delay
modulation

(Miller code)

Data 1 0 1 1 10 0 0

0/-s(t) 1/s(t) 0/s(t)

1/-s(t)
S0=0 S1=1

State
S0

State
S1
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0 1
1 0

      (5.45) 

Thus, these two state transition matrices characterize the NRZI signal. 

Another way to display the memory is by a trellis diagram. The trellis provides the same information 
concerning the signal dependence as the state diagram, but also depicts a time evolution of the state 
transitions. 

 

Figure 5.14 The trellis diagram for the NRZI signal  

The signal generated by delay modulation also has memory. Delay modulation is equivalent to 
encoding the data sequence by a run-length-limited code called a Miller code and using NRZI to 
transmit the encoded data this type of modulation has been used extensively in binary PSK. The signal 
may be described by a state diagram that has four states as shown in Figure 5.15a). There are two 
elementary waveforms  and  and their negatives  and  which are used for 
transmitting the binary information. These waveforms are illustrated in Figure 5.15b). The mapping 
from bits to corresponding waveforms is illustrated in the state diagram. The state transition matrices 
that characterize the memory of this encoding and modulation method are easily obtained from the 
state diagram in Figure 5.15. When 0, we have 

0 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0	

      (5.46) 

and when 1, the transition matrix is 

0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0	

      (5.47) 

 

Figure 5.15 a) State diagram and basic waveforms b) for delay modulated (Miller-encoded) signal 
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Modulation techniques with memory such as NRZI coding are generally characterized by a K-state 
Markov chain with stationary state probabilities 1,2, … ,  and transition probabilities 
{ ; 	 , 	 	1,2, … , . Thus, the transition probability  denotes the probability that signal 

waveform is transmitted in a given signaling interval after the transmission of the signal 

waveform  in the previous signaling interval. The transition probabilities may be arranged in 
matrix form as 

.

.
. . . .

.	

      (5.48) 

where P is called the transition probability matrix. 

The transition probability matrix is easily obtained from the transition matrices  and the 
corresponding probabilities of occurrence of the input bits (or, equivalently, the stationary state 
transition probabilities . The general relationship may be expressed as 

∑       (5.49) 

where 0  and 1 . 

For the NRZI signal with equal state probabilities  and transition matrices given by 

Equations 5.44 and 5.45, the transition probability matrix is 

1/2 1/2
1/2 1/2

	
      (5.50) 

Similarly, the transition probability matrix for the Miller-coded signal with equally likely symbols 
( 1/2 or, equivalently, 1/4  is 

0 1/2 0 1/2
0 0 1/2 1/2
1/2 1/2 0 0
1/2 0 1/2 0	

     (5.51) 

The transition probability matrix is useful in the determination of the spectral characteristics of digital 
modulation techniques with memory, as we shall observe in Section 5.4. 

5.3.3 Non-Linear Modulation Methods with Memory  

Continuous-phase FSK (CPFSK) 

To avoid the use of signále having large spectral side lobes, the information-bearing signal frequency 
modulates a single carrier whose frequency is changed continuously (CPFSK). This type of FSK 
signal has memory because the phase of the carrier ic constrained to be continuous. 

In order to represent a CPFSK signal, we begin with a PAM signal 

	 ∑      (5.52) 

where  denotes the sequence of amplitudes obtained by mapping k-bit blocks of bojary digits from 
the information sequence  into the amplitude levels 1, 3, … , 1 	  and  is a 
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rectangular pulse of amplitude 1/2 and duration T seconds. The signal  is used to frequency-
modulate the carrier. Consequently, the equivalent low-pass waveform  is expressed as 

exp	 4 ∅ 	   (5.53) 

where  is the peak frequency deviation and ∅ 	 is the initial phase of the carrier. The carrier-
modulated signal corresponding to Equation 4.53 may be expressed as 

cos 2 t ∅ ; ∅ 	   (5.54) 

where ∅ ;  represents the time-varying phase of the carrier, which is defined as 

∅ ; 4 4 ∑ 	   (5.55) 

Note that, although  contains discontinuities, the integral of  is continuous. Hence, we have a 
continuouse-phase signal. The phase of the carrier in the interval 1 	is determined by 
integrating Equation 5.55. Thus, 

∅ ; 2 ∑ 2 θ 2  (5.56) 

where , θ  and g are defined as 

2        (5.57) 

θ ∑       (5.58) 

0, 0 		

2 , 0 	
1
2 ,

      (5.59) 

We observe that θ  represents the accumulation (memory) of all symbols up to time 1 . The 
parameter  is called the modulation index. 

Continuous-phase modulation (CPM) 

When expressed in the form Equation 4.56, CPFSK becomes a special case of a general vlase of 
continuous-phase modulated (CPM) signále in which the carrier phase is 

∅ ; 2 ∑ , 1   (5.60) 

where  is the sequence of M-ary information symbols selected from the 1, 3, … ,
1 ,  is a sequence of modulation indices, and  is some normalized waveform shape. 

When 	for all , the modulation index is fixed for all symbols. When the modulation index 
varies from one symbol to another, the CPM signa lis called multi-h. In such a case, the are made 
to vary in a vycliv manner through a set of indices. 

The waveform  may be represented in general as the integral of some pulse , i.e., 

      (5.61) 
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If 	 	0 for 	 	 , the CPM signal is called full response CPM. If for 	 	 , the modulated 
signal is called partial response CPM. Figure 5.16 illustrates several pulses shapes for , and 
corresponding . I tis apparent that an infinite variety of CPM signále can be generated by choosing 
different pulse shapes  and by varying the modulation index  and the alphabet size . 

 

Figure 5.16 Pulse shapes for full-response CPM (a, b) and partial-response CPM (c, d), and GMSK (e) 

We note that the CPM signal has memory that is introduced through the phase continuity. For 	 	1, 
additional memory is introduced in the CPM signal by the pulse . 
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LREC denotes a rectangular pulse duration LT, where L is a positive integer. In this case, L = 1 results 
in a CPSK signal, with the pulses as shown in Figure 5.16a. The LREC pulse for L = 2 is shown in 
Figure 5.16c. LRC denotes a raised cosine pulse of duration LT. The LRC pulses corresponding to 
	 	1	and 	 	2 are shown in Figure 5.16b and d, respectively. The third pulse is called a Gaussian 

minimum-shift keying (GMSK) pulse with bandwidth parameter B, which represents the 
3 	bandwidth of the Gaussian pulse. Figure 5.16e illustrates a set of GMSK pulses with time-

bandwidth products BT ranging from 0.1	 	1. We observe that the pulse duration increases as the 
bandwidth of the pulse decreases, as expected. In practical applications, the pulse is usually truncated 
to some specific fixed duration. GMSK with 	 	0.3  is used in the European digital cellular 
communication systém, called GSM. From Figure 5.16e we observe that when 	 	0.3, the GMSK 
pulse may be truncated at | | 	 	1.5  with a relatively small error incurred for 	 	1.5 . 

 

 Figure 5.17 Phase trajectory for binary CPFSK 

It is instructive to sketch the set of phase trajectories ∅ ; 	generated by all possible values of the 
information sequence  . For example, in the case of CPFSK with bojary symbols 1 , the set 
of phase trajectories beginning at time 	 	0 is shown in  Figure 5.17. For comparison, the 
phase trajectories for quaternary CPFSK are illustrated in Figure 5.19.  

These phase diagrams are called phase trees. We observe that the phase trees for CPFSK are picewise 
linear as a consequence of the fact that the pulse g(t) is rectangular. Smoother phase trajectories and 
phase trees are obtained by using pulses that do not contain discontinuities, such as the vlase of raised 
cosine pulses. For example, a phase trajectory generated by the sequence 1, 1, 1, 1,1,1, 1,1  for 
a partial response, raised cosine pulse of length 3T is illustrated in Figure 5.18. For comparison, the 
corresponding phase trajectory generated by CPFSK is also shown. 
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Figure 5.18 Phase trajectories for binary CPFSK (dashed) and binary, partial-response CPM based on raised cosine pulse of 
length 3T (solid) [Source: Sundberg (1986), ©1986 IEEE] 

 

Figure 5.19 Phase trajectory for quanternary CPFSK 

Minimum-shift keying (MSK) 

MSK is a special form of CPFSK (and, therefore, CPM) in which the modulation index . The 

phase of the carrier in the interval 1 	is 

∅ ; ∑ θ , 1  (5.62) 
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and the modulated carrier signal is 

	 2 	 2 	 (5.63) 

The expression 5.63 indicates that the binary CPFSK signal can be expressed as a sinusoid having one 
of two possible frequencies in the interval 1 . If we devone these frequencies as 

	 , 			    (5.64) 

Then the binary CPFSK signal given by Eguation 5.63 may be written in the form 

	 2 1 	 , 1,2   (5.65) 

The frequency separation ∆ . Recall that ∆ 1
2  is the minimum frequency separation 

that is necessary to ensure the orthogonality of the signále and over a signalling interval of 
length T. This explains why bojary CPFSK with 	 	½ is called minimum-shift keying (MSK). 

Signal space diagrams for CPM. In general, continuous-phase signále cannot be represented by 
discrete points in signal space as in the case of PAM, PSK, and QAM, because the phase of the carrier 
is time-variant. Instead, a continuous-phase signa lis described by the various paths or trajectories 
from one phase state to another. For a konstant-amplitude CPM signal, the various trajectories form a 
circle. For example, Figure 5.20 illustrates the signal space (phase trajectory) diagram for CPFSK 

signals with 	 1
4 , 	 	 1 3	, 	 	 1 2, and 	 	 2 3. The beginning and ending point sof these 

phase trajectories are marked in the figure by dots. Note that the length of the phase trajectory 
increases with an increase in h. An increase in h also results in a increase of the signal bandwidth, as 
demonstrated in the following section. 

 

Figure 5.20 Signal space diagram for CPFSK 

A linear representation of CPM. As described above, CPM is a non-linear modulation technique with 
memory. However, CPM may also be represented as a linear superposition of signal waveforms. 

Multiamplitude CPM. Multiamplitude CPM is a generalization of ordinary CPM in which the signal 
amplitude is allowed to vary over a set of amplitude values while the phase of the signal is constrained 
to be continuous. 

 

 

h=1/4 h=1/3 h=1/2 h=2/3
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5.4 SPECTRAL CHARACTERISTIC OF DIGITALLY MODULATED 
SIGNALS 

In most digital communication systems, the available channel bandwidth is limited. Consequently, the 
system designer must consider the constraints imposed by the channel bandwidth limitation in the 
selection of the modulation technique used to transmit the information. For this reason, it is important 
for us to determine the spectral content of the digitally modulated signals. 

Since the information sequence is random, a digitally modulated signal is a stochastic process. We are 
interested in determining the power density spectrum of such a process. From the power density 
spectrum we can determine the channel bandwidth required to transmit the information-bearing signal. 

5.4.1 Power Spectra of Linearly Modulated Signals 

Beginning with the form 

 

which relates the band-pass signal  to the equivalent low-pass signal , we may express the 
autocorrelation function of  as 

∅ ∅ 			    (5.66) 

where	∅ is the autocorrelation function of the equivalent low-pass signal . 

The Fourier transform of Equation 5.66 yields the desired expression for the power density spectrum 
in the form 

Φ Φ Φ 			    (5.67) 

Where Φ  is the power density spectrum of . 

First we consider the linear digital modulation method for which  is represented in the general 
form 

∑ 		      (5.68) 

where the transmission rate is 1  symbols/s and  represents the sequence of symbols that 

results from mapping k-bit blocks into corresponding signal points selected from the appropriate signal 
space diagram. Observe that in PAM, the sequence   is real and corresponds to the amplitude 
values of the transmitted signal, but in PSK, QAM, and combined PAM-PSK, the sequence  is 
complex-valued, since the signal points have a two-dimensional representation. 

The average power density spectrum of  is 

Φ | | Φ 		      (5.69) 

where  is the Fourier transform of , and Φ 	 denotes the power density spectrum of the 
information sequence, defined as 

Φ ∑ Φ 	     (5.70) 
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The result 5.69 illustrates the dependence of the power density spectrum of  on the spectral 
characteristics of the pulse  and the information sequence . That is, the spectral characteristics 
of  can be controlled by design of the pulse shape  and by design of the correlation 
characteristics of the information sequence. 

The desired power density spectrum of  when the sequence of information symbol sis 
uncorrelated is in the form 

Φ | | ∑ 	    (5.71) 

Where  denotes the variance of an information symbol and 	denotes the mean. 

The expression 5.71 for the power density spectrum is purposely separated into two terms to 
emphasize the two different types of spectral components. The first term is the continuous spectrum, 
and its shape depends only on the spectral characteristic of the signal pulse . The second term 

consists of discrete frequency components spaced 1  apart in frequency. Each spectral line has a 

power that is proportional to evaluated at . Note that the discrete frequency 

components vanish when the information symbols have zero mean, i.e., 0. This condition is 
usually desirable for the digital modulation techniques under consideration, and it is satisfied when the 
information symbols are equally likely and symmetrically positioned in the complex plane. Thus, the 
system designer can control proper selection of the characteristics of the information sequence to be 
transmitted. 

5.4.2 Power Spectra of CPFSK and CPM Signals 

The power density spectrum of CPFSK for M = 2, 4, and 8 is plotted in Figures 5.21 to 5.23 as a 
function of the normalized frequency , with the modulation index 	 	2	  as a parameter. Note 
that only one-half of the bandwidth occupancy is shown in Figure 5.21.  

The origin corresponds to the carrier . The graphs illustratethat the spectrum of CPFSK is relatively 
smooth and well confined for 	 	1. As h approaches unity, the spectra become very peaked, and for 
	 	1 when |Φ| 	 	1, we find that impulses occur at  frequencies. When h > 1, the spectrum 

becomes much broader. In communication systems where CPFSK is used, the modulation index is 
designed to conserve bandwidth, so that	 	 	1. 



Chapter V Digital Modulation Schemes    

103 
 

 

Figure 5.21 Power spectral density of binary CPFSK 

 

Figure 5.22 Power spectral density of quaternary CPFSK 

a) b)

c) d)

a) b)

c)
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Figure 5.23 Power spectral density of octal CPFSK 

In general, the bandwidth occupancy of CPM depends on the choice of the modulation index h, the 
pulse shape , and the number of signals M. As we have observed for CPFSK, small values of h 
result in CPM signals with relatively small bandwidth occupancy, while large values of h result in 
signals with large bandwidth occupancy. This is also the case for the more general CPM signals. 

 

Figure 5.24 Power spectral density of MSK and OQPSK. [Source: Gronemeyer and McBride (1976);© IEEE.] 

a) b)
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Figure 5.25 Fractional out-of-band power (normalized two-sided bandwidth = 2WT). [Source: Gronemeyer and McBride ;© 
IEEE.] 

 

Figure 5.26 Power spectral density for binary CPM with 	 	 1 2	and different pulse shapes. [Source: Aulin et al. (1981);© 
IEEE.] 

 

Figure 5.27 Power spectral density for M = 4 CPM with 3RC and different modulation indices. [Source: Aulin et al. 
(1981);;© IEEE.] 
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5.4.3 Solved Problems 

Problem 1 

To illustrate the spectral shaping resulting from , consider the rectangular pulse shown in Figure 
a).  

Solution 

The Fourier transform of g(t) is 

sin
 

Hence 

| |
sin

 

This spectrum is illustrated in Figure b). 

 

Note that it contains zeros at multiples of 1/ 	in frequency and that it decays inversely as the square 
of the frequency variable. As a consequence of the spectral zeros in , all but one of the discrete 
spectral components in Equation 5.71 vanish. Thus upon substitution for || |  reduces to 

Φ     (5.72) 

Problem 2 

As a second illustration of the spectral shaping resulting from , we consider the raised cosine 
pulse 

1 cos , 0      

Solution 

This pulse is graphically illustrated in Figure 2. Its Fourier transform is easily derived, and it may be 
expressed in the form 

       

g(t)

t

A

0 T

|G(f)|2

t

(AT)2

0 1/T 2/T-3/T
a)

-2/T -1/T

b)
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Consequently, all the discrete spectral components in Equation 5.71, excerpt the one at 0 and 
1  , vanish. When compared with the spectrum of the rectangular pulse, the spectrum of the 

raised cosine pulse has a broader main lobe but the tails decay inversely as f. 

Problem 3 

To illustrate that spectral shaping can also be accomplished by operations performed on the input 
information sequence, we consider a binary sequence  from which we form the symbols 

 

The  are assumed to be uncorrelated random variables, each having zero mean and unit variance. 
Then the autocorrelation function of the sequence  is 

∅
2	 0
1 1
0

 

Hence, the power density spectrum of the input sequence is 

∅ 2 1 cos 2 4  

and the corresponding power density spectrum for the (low-pass) modulated signal is 

Φ
4
| |  

Problem 4 

Consider an equivalent low-pass digitally modulated signal of the form 

2 2  

where  and are two sequences of statistically independent binary digits and  is a 
sinusoidal pulse defined as 

sin
2

, 0 2

0,
 

This type of signal is viewed as a four-phase PSK signal in which the pulse shape is one-half cycle of 

a sinusoid. Each of the information sequences  and 	is transmitted at rate of   bits/s and, 

hence, the combined transmission rate is 	bits/s. The two sequences are staggered in time by T 

seconds in transmission. Consequently, the signal  is called staggered four-phase PSK. 

a) Show that the envelope | |	is a constant, independent of the information an on the in-phase 
component and information  on the quadrature component. In other words, the amplitude of 
the carries used in transmitting the signal is constant. 

b) Determine the power density spectrum of . 
c) Compare the power density spectrum obtained from (b) with the power density spectrum of 

the MSK signal. What conclusion can you draw from this comparison? 
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Solution 

a) Since the signaling rate is	 T  for each sequence and since g(t) has duration 2T, for any time 

instant only 2  and 2  or 2  will contribute to . 
Hence, for 2 2  

| | | 2 |  
 

sin
2
2

sin
2

2
 

sin
2
2

cos
2
2

1, ∀  

 
b) The power density spectrum is: 

Φ
1
| |  

 

Where . By using trigonometric identity 

sin  it is easily shown that: 

4 cos 2
1 16

 

Hence 

4 cos 2
1 16

 

4 cos 2
1 16

 

Φ
1 4 cos 2

1 16
	
16 cos 2

1 16
 

 

c) The above power density spectrum is identical to that for the MSK signal. Therefore, the MSK 
signal can be generated as a staggered four phase PSK signal with a half-period sinusoidal 
pulse for g(t) 

Problem 5 

The low-pass equivalent representation of PAM signal is 

 

Suppose  is a rectangular pulse and 
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where 	is a sequence of uncorrelated binary-valued (1,-1) random variables that occur with equal 
probability. 

a) Determine the autocorrelation function of the sequence . 
b) Determine the power density spectrum of u(t). 
c) Repeat (b) if the possible values of the an are (0,1). 

Solution 

a)  with the sequence  being uncorrelated random variables (i.e 
. Hence 

Φ  

2 2 2  

2, 0
1, 2

0,
 

b) Φ f |G f | Φ f  where: 

Φ f ∅ m e 2 e e 2 1 cos4πfT  

And  

|G f | AT
sin πfT
πfT

 

Therefore: 

Φ f 4A T
sin πfT
πfT

sin 2πfT 

 

c) If  takes the values (0,1) with equal probability then 1
2  and 	

,

,
, then: 

∅ f E 2∅ 0 ∅ 2 ∅ 2  

1
4
2δ m δ m 2 δ m 2  

And  

Φ f ∅ m e 2πfT 

Φ f A T
sin πfT
πfT

sin 2πfT 
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Thus, we obtain the same results as in (b), but the magnitude of the various quantities is reduced by a 
factor of 4. 

5.5 SUMMARY 
 Pulse-amplitude modulation results when the amplitude of each carrier pulse is proportional to 

the value of the message signal at each sampling instant. Pulse-amplitude modulation is 
essentially a sample-and-hold operation. Demodulation of PAM is accomplished by lowpass 
filtering. 

 Pulse-width modulation results when the width of each carrier pulse is proportional to the 
value of the message signal at each sampling instant. Demodulation of PWM is also 
accomplished by lowpass filtering. 

 Pulse-position modulation results when the position of each carrier pulse, as measured by the 
displacement of each pulse from a fixed reference, is proportional to the value of the message 
signal at each sampling instant.  

 Digital pulse modulation results when the sample values of the message signal are quantized 
and encoded prior to transmission. 

 A convenient measure of bandwidth occupancy for digital modulation is in terms of out-of-
band power or power-containment bandwidth. An ideal brick wall containment bandwidth that 

passes 90% of the signal power is approximately1 	Hz for QPSK, OQPSK, andMSK and 

about 2  Hz for BPSK 

 Phase Shift Keying is often used, as it provides a highly bandwidth efficient modulation 
scheme. 

 QPSK, modulation is very robust, but requires some form of linear amplification. QPSK and 

4	- QPSK can be implemented, and reduce the envelope variations of the signal. 

 High level M-ary schemes (such as 64-QAM) are very bandwidth efficient, but more 
susceptible to noise and require linear amplification. 

 Constant envelope schemes (such as GMSK) can be employed since an efficient, non-linear 
amplifier can be used.  

 Coherent reception provides better performance than differential, but requires a more complex 
receiver. 

5.6 EXERCISES 
1. Consider a four-phase PSK signal represented by the equivalent low-pass signal 

 

where  takes on one of the four possible values 1  with equal probability. The 

sequence of information symbols  is statistically independent. 

a. Determine and sketch the power density spectrum of  when 

, 0
0,  

b. Repeat  when 
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/ , 0
0,

 

c. Compare the spectra obtained in (a) and (b) in terms of the 3-dB bandwidth and the 
bandwidth to the first spectral zero 

2. π- QPSK may be considered as two QPSK systems offset by π/4 radians. 
a. Sketch the signal space diagram for a π/4-QPSK signal 
b. Using Gray encoding, label the signal points with the corresponding data bits. 

3. A PAM partial-response signal (PRS) is generated as shown in Figure by exciting an ideal 
lowpass filter of bandwidth W by the sequence  

 

at a rate 1 2 2  symbols/s. The sequence  consists of binary digits selected 
independently from the alphabet 1, 1  with equal probability. Hence, the filtered signal 
has the form 

,
1
2

 

 

a) Sketch the signal space diagram for v(t), and determine the probability of occurrence of 
each symbol. 

b) Determine the autocorrelation and power density spectrum of the three-level 
sequence	 . 

c) The signal points of the sequence	 . form a Markov chain. Sketch this Markov chain, 
and indicate the transition probabilities among the states. 

4. Determine the autocorrelation functions for the MSK and offset QPSK modulated signals 
based on the assumption that the information sequences for each of the two signals are 
uncorrelated and zero-mean. 

5. Let  denote an information sequence of independent random variables, taking values 
of 1 with equal probability. A QPSK signal is generated by modulating a rectangular pulse 
shape of duration 2  by even and odd indexed	 ’s to obtain the in-phase and quadrature 
components of the modulated signal. In other words, we have 

1, 0 2
0,  

and we generate the in-phase and quadrature components according to 

2  

G(f)
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2  

Then  and 	  

a) Determine the power spectral density of . 
b) Now let ∑ 2 1 , in other words, let the quadrature 

component stagger the in-phase component by T . This results in an OQPSK system. 
Determine the power spectral density of  in this case. How does this compare with 
the result of part a? 

c) If in part b instead of  we employ the following sinusoidal signal  

sin	
2

, 0 2

0,
 

the resulting modulated signal will be an MSK signal. Determine the power spectral 
density of 	in this case. 

d) Show that in the case of MSK signaling, although the basic pulse  does not have 
constant amplitude, the overall signal has a constant envelope. 

6. Consider the signal constellation shown in Figure 

 

The lowpass equivalent of the transmitted signal is represented as  

 

where  is a rectangular pulse defined as 

1, 0
0,  

and the ’s are independent and identically distributed (iid) random variables that can assume 
the points in the constellation with equal probability. 

a) Determine the power spectral density of the signal s t . 
b) Determine the power spectral density of the transmitted signal s t , assuming that thecarrier 

frequency is f  (assuming f ≫  

c) Determine and plot the power spectral density of . for the case when  (plot the 
PSD as a function of 	 ). 

45 r1 r2
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